Global convergence of the nonmonotone MBFGS method for nonconvex unconstrained minimization
نویسندگان
چکیده
منابع مشابه
A Nonmonotone Second - Order Steplength Method for Unconstrained Minimization
In this paper, a nonmonotone method based on McCormick’s second-order Armijo’s step-size rule [7] for unconstrained optimization problems is proposed. Every limit point of the sequence generated by using this procedure is proved to be a stationary point with the second-order optimality conditions. Numerical tests on a set of standard test problems are presented and show that the new algorithm i...
متن کاملAn inexact and nonmonotone proximal method for smooth unconstrained minimization
An implementable proximal point algorithm is established for the smooth nonconvex unconstrained minimization problem. At each iteration, the algorithm minimizes approximately a general quadratic by a truncated strategy with step length control. The main contributions are: (i) a framework for updating the proximal parameter; (ii) inexact criteria for approximately solving the subproblems; (iii) ...
متن کاملThe Global Convergence of Self-Scaling BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is...
متن کاملOn the Global Convergence of the PERRY-SHANNO Method for Nonconvex Unconstrained Optimization Problems
In this paper, we prove the global convergence of the Perry-Shanno’s memoryless quasi-Newton (PSMQN) method with a new inexact line search when applied to nonconvex unconstrained minimization problems. Preliminary numerical results show that the PSMQN with the particularly line search conditions are very promising.
متن کاملThe Global Convergence of Self-scale BFGS Algorithm with Nonmonotone Line Search for Unconstrained Nonconvex Optimization Problems
The self-scaling quasi-Newton method solves an unconstrained optimization problem by scaling the Hessian approximation matrix before it is updated at each iteration to avoid the possible large eigenvalues in the Hessian approximation matrices of the objective function. It has been proved in the literature that this method has the global and superlinear convergence when the objective function is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2009
ISSN: 0377-0427
DOI: 10.1016/j.cam.2007.12.011